SIMPLE METHOD OF MEASURING A VARIABLE HEAT FLUX

L. A. Sergeeva and V. L. Sergeev , UDC 536.2.083

A method of measuring a time-dependent heat flux is described and results of a veri=-
fication are presented.

A number of methods [1] can be used to measure a heat flux which varies with time.

Methods were described in [2-7] for determining large variable heat fluxes from a plasma
jet to an obstacle. The heat-flux sensors were copper rods modeling a semiinfinite body or
a flat plate., Thermocouples were mounted along the rod at one or several cross sections,
and one thermocouple was placed close to the heated surface. In particular, in using the
semiinfinite body method [5], the distances of the thermocouple from the working surface of
the sensor should optimally be about 1 mm. From the measured temperatures one can recover
the heat flux to the sensor surface, using some appropriate correlation.

The measurement of temperature at several sections along a heated surface (in particu-
lar, close to the surface) complicates sensor design and data reduction and reduces sensor
reliability.

The sensor design can be simplified by locating the thermocouple at the rear face of
the rod. This structure is found in the exponential (or calorimetric) heat-flux sensor [8].
The exponential method can also be used to measure unsteady heat flux at small values of Bi
[1}. It is difficult to use it for large heat fluxes because of the condition mentioned.
In addition, in the derivation of the theoretical relation

g = cpR dt/dx (1)

the dependence of the thermophysical properties of the calorimeter material on temperature,

which may be substantial, has not been accounted for. For copper, in particular, the varia-
tion in properties from their mean values can reach 20-30%. Thus, the use of Eq. (1), even

to determine a constant heat flux, requires further verification.

Similarly, the dependence of material property on temperature is not accounted for in a
number of methods for measuring unsteady heat fluxes.

The problem of heating a flat plate with an arbitrary heat flux on one surface, with the
second surface thermally insulated, and allowing for the dependence of properties on tempera-
ture, can be formulated as follows:
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It is known that the temperature field over a plate with constant heat flux, omitting a small
initial range, is described by the parabolic relation [9]
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We seek a solution of Egs. (2)-(6) in the form
t(x, T) = M+ Nx2, (8)
where M and N are functions of time. From condition (4) we find
g (1) = — 2RN (3, 53 (M + NR?) 9)

Expression (8) is automatically satisfied by condition (5). Substituting Eq. (8) into Eq.
(2), for.x = 0, we obtain

N:(%+quM'

10
2 (b + Ay M) o

Here M and M' are values of the temperature and its time derivative on the rear surface (x =
0). By measuring the temperature on the rear surface we can calculate the heat flux from
Eqs. (9) and (10). The error associated with approximating the temperature field with the
parabola of Eq. (8) can be reduced substantially by applying the calorimetric approach. From
Eq. (2) we obtain

R
4 at
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For c1.= A1 = 0 and q=const, N' = 0, since 3t/31 is independent of x in this case for Fo =
0.3 [9]. Equation (11) can be transformed to the form
' g = pcRM'; (12)

i.e., we obtain the well~known relation (1) of the calorimetric method.
Substituting Eq. (8) into Eq. (2), for x = R we obtain

v = 2N O+ Miy + 3NMLRY M (13)

R ¢, + ¢; (M + NR)) R?

Thus, from the measured temperature at the rear surface of the plate we can use Egs.
(10), (13), and (11) to calculate an arbitrarily variable or constant heat flux at the sur-
face x = R. The method accounts for the dependence of the thermophysical properties of the
sensor material on temperature.

To check the method, a numerical solution using an explicit scheme was performed for
the above problem, with several variants for the variation of the heat flux on the surface.
The heat £lux was evaluated from the temperatures determined using the above formulas.

In the solution we approximated Eq. (2) by a difference equation of the form
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The step sizes At and Ax were chosen from the condition
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It follows from boundary condition (5) that 8i,k = Bi-1,ke The following variants of the
relation q(t) were considered, in particular, at the surface x = R:

a constant heat flux

Ax
Og1,0=02,p+ :'"EQ*———— ) (16)
i + }~162,k
a rectangular variation of heat flux (Fig. 2)
' 4 g'kA
Os1.0 =02+ QﬂL;_i___Iléfl, 17)
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where the coefficients qo and q' are changed at a certain time. The rectangular pulse is a
model of the variation of g at the stagnation point of a body during entry into dense atmo-
spheric layers [11] and during heating of a body by plasma jets with fluctuating parameters.

Calculation on the Elektronika-S50 have shown that with a step size of Ax = 0.01-0.02
em (At = 0.25°10=“-10"" sec) the accuracy is satisfactory (Fig. 1). The program provided
for up to 70 points to be calculated along the coordinate.

In determining the heat flux the time derivative of temperature (13) is calculated from
the following relations:

for the first point
. 1
o = oAt (_ 360 + 491 - 62) (18)

and for the remaining points
Ok = (1 — 05 1)/207. (19)

The interval At in Eqs. (18) and (19) could be chosen arbitrarily. In contrast with
the semiinfinite body method [5], for which each successive heat-flux value is calculated
from all the previous values, when one uses Egqs. (10), (11), and (13) the calculation for
any time value can be performed independently of the previous heat-flux values. Because of
the peculiarity mentioned, a calculation using the method of [5] often leads to steadily in-
creasing oscillations in the results, because of accumulation of errors.

The program for computing heat flux using Eqgs. (10), (11), (13), (18), and (19) can
easily be run on small type Elektronika-S550 computers.

The results of determining heat flux with an initial constant q are satisfactory (Fig.
2a). The error is 3%. The figure also shows the results of calculating the heat flux by
the exponential method, using average values of ¢ and p. It should be noted that, in spite
of the substantial change in the temperature of the calorimeter element (from room tempera-
ture to fusion temperature), the results of calculating using Eq. (1) are in satisfactory
agreement (within 10%) with the initial heat-flux values. The temperature curves (Fig. 2a)
have linear sections, and the temperature gradients there are practically independent of the
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Fig. 1. Resulting heat flux (kW/cm?) as a function of co-
ordinate step size (cm) used in calculating the tempera-
ture field; 7 = 0.1 sec, initial heat flux q = qo + ¢q'T,
where q' = 5; kW/cm?®/sec, qo = 0.
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Fig. 2. Heat-flux results (kW/cm?) as a function of time (sec):
1) initial heat flux; 2, 3) temperature at x = R and 0, respec-
tively; 4, 5) resulting heat flux [4) from Egs. (10), (11) and
(13); 5) from Eq. (1)].

coordinate. Thus, the basic conditions of the exponential method are satisfied, and it can
be used to measure constant heat-flux values using copper calorimeters, right up to the fu~
sion temperature.

Satisfactory agreement was also obtained with a time-dependent heat flux, both in phase
and in amplitude of the calculated results, using the method described, with initial values
of q, in spite of the kink in the original dependence (Fig. 2b).
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